

# **Eco-Efficiency of Chair Design Concepts**

using GaBi i-report

DRAFT numbers - final wood weights to be confirmed! Steaming missing - needs to be added --- no alder -- ash as first estimate, needs to be confirmed

**Preseve chair** 

**Lauren Davis** 



## 1 Introduction

Life cycle assessment (LCA) is a standardized scientific method for systematic analysis of flows (e.g. mass and energy) associated with the life cycle of a specified product, a technology, a service or manufacturing process systems (ISO 2006). The approach in principle aims at a holistic and comprehensive analysis of the above items including raw materials acquisition, manufacturing as well as use and End-of-life (EoL) management. According to the International Organization for Standardization (ISO) 14040/44 standards, an LCA study consists of four phases : (1) goal and scope (framework and objective of the study); (2) life cycle inventory (input/output analysis of mass and energy flows); (3) life cycle impact assessment (evaluation of environmental relevance, e.g. global warming potential); and (4) interpretation (e.g. optimization potential) (ISO 2006).

The goal and scope stage outlines the rationale of the study, the anticipated use of the results of the study, the boundary conditions, the data requirements and the assumptions to analyze the product system under consideration, and other similar technical specifications for the study. The goal of the study is to answer the specific questions which have been raised by the target audience and the stakeholders involved, while considering potential uses of the study's results. The scope of the study defines the systems' boundary in terms of technological, geographical, and temporal coverage of the study, attributes of the product system, and the level of detail and the complexity addressed by the study.

The life cycle inventory (LCI) stage qualitatively and quantitatively analyzes the materials and energy used (inputs) as well as the products and by-products generated, the environmental releases in terms of non-retained emissions to the environmental compartments and the wastes to be treated (outputs) for the product system being studied. The LCI data can be used on its own to: understand total emissions, wastes and resource-use associated with the material or the product being studied; improve production or product performance; or be further analyzed and interpreted to provide insights into the potential environmental impacts from the system (life cycle impact assessment and interpretation, LCIA).

## 2 Context

# The American Hardwood Export Council teams up with the Royal College of Art to merge design with sustainability

The American Hardwood Export Council is collaborating with product design students at the Royal College of Art in London to produce and exhibit chairs during the London Design Festival.

Under the leadership of tutors Sebastian Wrong and Harry Richardson, using wood as a material and its Life Cycle impacts have been added to the Design Products curriculum and the students have been set the challenge of designing a functional chair or seat in an American hardwood of their choice. The designs will be developed in to working prototypes with the help of Benchmark, internationally renowned for its craftsmanship in wood and long-standing relationship with designer Terence Conran.

The American Hardwood Export Council (AHEC) is well known in the international design

community for its creative promotion of hardwood, having worked with the likes of David Adjaye, Matteo Thun, Sou Fujimoto, Arup and Amanda Levete. But now its attention has turned to the potential stars of the future with a unique and groundbreaking project for students.

Education and research provides a unique element to the project because AHEC is using, for the first time, its ground-breaking Life Cycle Assessment (LCA) research to help the students produce detailed Life Cycle impacts for their designs.

Each chosen prototype will be environmentally profiled using this i-report developed for AHEC by sustainability experts, PE International.

The LCI profiles of American hardwood are based on a critically reviewed LCA study. In addition AHEC is in the process of producing the first-ever Environmental Product Declaration for American hardwood lumber and veneer; it is this data that will be used by the students to build a full "cradle-to-grave" impact for their designs.

## 3 Scope of the study

## 3.1 Choice of Impact Categories

A comprehensive set of environmental impact categories has been investigated. The choice of categories was made based on the recommendations of the ILCD Handbook (ILCD Handbook, 2010) and the choice of indicators was made based on the European EPD rules for construction products (EN 15804, 2012).

The study life cycle impact assessment includes the following inventory flows and environmental categories: primary energy demand (total and non-renewable sources), global warming potential, photochemical oxidant creation potential (smog formation), acidification potential, stratospheric ozone depletion and eutrophication potentials.

In the selected impact categories the CML indicators were calculated. The methods and indicators for each category were chosen based on the European EPD rules for construction products (EN 15804, 2012).

| Category<br>Indicator | Impact category               | Description                                                                                                                                                                                                                                                                                                                                                                                       | Unit | Reference                                                   |
|-----------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------|
| Energy Use            | Primary Energy<br>Demand (PE) | A measure of the total amount of<br>primary energy extracted from the earth.<br>PE is expressed in energy demand from<br>non-renewable resources (e.g.<br>petroleum, natural gas, uranium, etc.)<br>and energy demand from renewable<br>resources (e.g. hydropower, wind energy,<br>solar, etc.). Efficiencies in energy<br>conversion (e.g. power, heat, steam, etc.)<br>are taken into account. | MJ   | Guinée<br>et al.,<br>2001,<br>factors<br>updated<br>in 2010 |

The details of each impact category and its indicator are shown in the following table.

| Category<br>Indicator               | Impact category                                     | Description                                                                                                                                                                                                                                                                                                                                                                    | Unit                                                                                        | Reference                                                         |
|-------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Climate<br>Change                   | Global Warming<br>Potential**<br>(GWP)              | A measure of greenhouse gas emissions,<br>such as $CO_2$ and methane. These<br>emissions are causing an increase in the<br>absorption of radiation emitted by the<br>earth, magnifying the natural<br>greenhouse effect.                                                                                                                                                       | kg CO <sub>2</sub><br>equivalent                                                            | IPCC,<br>2006,<br><i>100 year</i><br><i>GWP is</i><br><i>used</i> |
| Eutrophication                      | Eutrophication<br>Potential (CML)                   | A measure of emissions that cause<br>eutrophying effects to the environment.<br>The eutrophication potential is a<br>stoichiometric procedure, which<br>identifies the equivalence between N and<br>P for both terrestrial and aquatic systems                                                                                                                                 | kg Phosphate<br>equivalent                                                                  | Guinée<br>et al.,<br>2001,<br>factors<br>updated<br>in 2010       |
| Acidification                       | Acidification<br>Potential (CML)                    | A measure of emissions that cause<br>acidifying effects to the environment.<br>The acidification potential is assigned by<br>relating the existing S-, N-, and halogen<br>atoms to the molecular weight.                                                                                                                                                                       | kg SO2<br>equivalent                                                                        | Guinée<br>et al.,<br>2001,<br>factors<br>updated<br>in 2010       |
| Ozone creation<br>in troposphere    | Photochemical<br>Ozone Creation<br>Potential (POCP) | A measure of emissions of precursors<br>that contribute to low level smog,<br>produced by the reaction of nitrogen<br>oxides and VOC's under the influence of<br>UV light.                                                                                                                                                                                                     | kg Ethene<br>equivalent                                                                     | Guinée<br>et al.,<br>2001,<br>factors<br>updated<br>in 2010       |
| Stratospheric<br>Ozone<br>Depletion | Stratospheric<br>Ozone Depletion                    | Refers to the thinning of the<br>stratospheric ozone layer as a result of<br>emissions. This effect causes a greater<br>fraction of solar UV-B radiation to reach<br>the surface earths, with potentially<br>harmful impacts to human and animal<br>health, terrestrial and aquatic<br>ecosystems etc. referring<br>trichlorofluoromethane, also called freon-<br>11 or CFC 11 | Kg CFC-11<br>equivalent or<br>trichlorofluoro<br>methane, also<br>called freon-11<br>or R11 | Guinée<br>et al.,<br>2001,<br>factors<br>updated<br>in 2010       |

### 3.2 Biogenic carbon

During growth, carbon is stored in the wood via photosynthesis. This biogenic carbon is stored in the lumber and its subsequent products. The carbon stored in biomass will - sooner or later- be released – at the end of the product's life cycle. The end of the product's life cycle is not included in this study. The potential benefits from carbon storage, delayed emissions or substituting effect could be fully excluded or accounted differently according to different standards. To enable study stakeholders to utilise the data for different applications, and to avoid the AHEC communication being perceived as "green washing", the stored (biogenic) carbon will be clearly quantified in the inventory for transparent carbon balance, and treated as a separate element in the report whilst not being subtracted from the Global Warming impact of the product.

Stored carbon that does not end up in the final lumber product, e.g. carbon stored in forest

leftover biomass (e.g. small branches) or saw-mill co-products (e.g. chips, dust) is not assigned to the lumber. It is assumed to be eventually converted back to CO2 and emitted. Carbon in the forest floor or forest soil is not assigned to the lumber. Only the carbon that is stored in the final lumber product is accounted as stored carbon.

Not enough data is available on the carbon content in different hardwood species and a conservative value 46.27% carbon in abs dry mass was modeled as carbon storage for all hardwood species. This is a minimum value reported for hardwoods (Lamlom, Savidge, 2003).

Besides the carbon stored in the final lumber product, removals from the atmosphere from biogenic sources are not modeled in this study. Therefore, Biogenic carbon dioxide emissions are modeled as carbon neutral (no impact of the GWP) as they are offset by the uptake in biomass.

## 4 Results

|                    | CML2001 -<br>Nov. 2010,<br>Acidification<br>Potential<br>(AP) [kg<br>SO2-Equiv.] | CML2001 -<br>Nov. 2010,<br>Eutrophicati<br>on Potential<br>(EP) [kg<br>Phosphate-<br>Equiv.] | CML2001 -<br>Nov. 2010,<br>Global<br>Warning<br>Potential<br>(GWP 100<br>years) [kg<br>CO2-Equiv.] | CML2001 -<br>Nov. 2010,<br>Ozone<br>Layer<br>Depletion<br>Potential<br>(ODP,<br>steady<br>state) [kg<br>R11-Equiv.] | CML2001 -<br>Nov. 2010,<br>Photochem.<br>Ozone<br>Creation<br>Potential<br>(POCP) [kg<br>E thene-<br>E quiv.] | Primary<br>energy<br>demand<br>from ren.<br>and non ren.<br>resources<br>(net cal.<br>value) [MJ] | Primary<br>energy from<br>resources<br>(net cal.<br>value) [MJ] |
|--------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Assembly/Finishing | 0,00                                                                             | 0,00                                                                                         | 0,78                                                                                               | 0,00                                                                                                                | 0,00                                                                                                          | 17,01                                                                                             | 16,21                                                           |
| End of life        | -0,01                                                                            | 0,00                                                                                         | -4,97                                                                                              | 0,00                                                                                                                | 0,00                                                                                                          | -83,04                                                                                            | -81,41                                                          |
| Material           | 0,10                                                                             | 0,01                                                                                         | 13, 14                                                                                             | 0,00                                                                                                                | 0,03                                                                                                          | 736,13                                                                                            | 186,30                                                          |
| Packaging          |                                                                                  |                                                                                              |                                                                                                    |                                                                                                                     |                                                                                                               |                                                                                                   |                                                                 |
| Processing         | 0,05                                                                             | 0,00                                                                                         | 15,48                                                                                              | 0,00                                                                                                                | 0,00                                                                                                          | 253,53                                                                                            | 241,75                                                          |
| Transport          | 0,00                                                                             | 0,00                                                                                         | 0,77                                                                                               | 0,00                                                                                                                | 0,00                                                                                                          | 11,02                                                                                             | 10,61                                                           |
| Use phase          | 0,00                                                                             | 0,00                                                                                         | 0,16                                                                                               | 0,00                                                                                                                | 0,00                                                                                                          | 2,28                                                                                              | 2,20                                                            |
| Waste              | -0,01                                                                            | 0,00                                                                                         | -5,66                                                                                              | 0,00                                                                                                                | 0,00                                                                                                          | -94,11                                                                                            | -92,21                                                          |

#### Overview Impact Assessment Chair1

Overview Impact Assessment Chair2

|                    | CML2001 -<br>Nov. 2010,<br>Acidification<br>Potential<br>(AP) [kg<br>SO2-Equiv.] | CML2001 -<br>Nov. 2010,<br>Eutrophicati<br>on Potential<br>(EP) [kg<br>Phosphate-<br>Equiv.] | CML2001 -<br>Nov. 2010,<br>Global<br>Waming<br>Potential<br>(GWP 100<br>years) [kg<br>CO2-Equiv.] | CML2001 -<br>Nov. 2010,<br>O zone<br>Layer<br>Depletion<br>Potential<br>(ODP,<br>steady<br>state) [kg<br>R11-Equiv.] | CML2001 -<br>Nov. 2010,<br>Photochem.<br>Ozone<br>Creation<br>Potential<br>(POCP) [kg<br>E thene-<br>E quiv.] | Primary<br>energy<br>demand<br>from ren.<br>and non ren.<br>resources<br>(net cal.<br>value) [MJ] | Primary<br>energy from<br>resources<br>(net cal.<br>value) [MJ] |
|--------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Assembly/Finishing |                                                                                  |                                                                                              |                                                                                                   |                                                                                                                      |                                                                                                               |                                                                                                   |                                                                 |
| End of life        |                                                                                  |                                                                                              |                                                                                                   |                                                                                                                      |                                                                                                               |                                                                                                   |                                                                 |
| Material           |                                                                                  |                                                                                              |                                                                                                   |                                                                                                                      |                                                                                                               |                                                                                                   |                                                                 |
| Packaging          |                                                                                  |                                                                                              |                                                                                                   |                                                                                                                      |                                                                                                               |                                                                                                   |                                                                 |
| Processing         |                                                                                  |                                                                                              |                                                                                                   |                                                                                                                      |                                                                                                               |                                                                                                   |                                                                 |
| Transport          |                                                                                  |                                                                                              |                                                                                                   |                                                                                                                      |                                                                                                               |                                                                                                   |                                                                 |
| Use phase          |                                                                                  |                                                                                              |                                                                                                   |                                                                                                                      |                                                                                                               |                                                                                                   |                                                                 |
| Waste              |                                                                                  |                                                                                              |                                                                                                   |                                                                                                                      |                                                                                                               |                                                                                                   |                                                                 |

#### Comparison Global Warming Potential



Comparison Acidification Potential



#### Comparison Eutrophication Potential



Comparison Ozone Depletion Potential



#### Comparison of Photochem. Ozone Creation Potential



Primary energy demand from ren. and non ren. resources



#### Primary energy from non-renewable resources



## 4.1 Impact Assessment of Material input

Acidification Potential (AP) [kg SO2-Equiv.]

|                              | Chair 1 | Chair 2 |
|------------------------------|---------|---------|
| American Hardwood Lumber 1   | 0,03    |         |
| American Hardwood Lumber 2   | 0,04    |         |
| American Hardwood Lumber 3   | 0,01    |         |
| American Hardwood Lumber 4   | 0,01    |         |
| American Hardwood Lumber 5   | 0,02    |         |
| PP reinforced plastic        |         |         |
| Coating (solvent based)      |         |         |
| Coating (water based)        | 0,00    |         |
| Epoxy glue                   |         |         |
| Nuts and bolds               |         |         |
| Leather                      |         |         |
| Plywood                      |         |         |
| PE (HD)                      |         |         |
| PU                           |         |         |
| PVA glue                     | 0,00    |         |
| PU synthetic leather         |         |         |
| PVC synthetic leather        |         |         |
| Stainless steel sheet        |         |         |
| Steel sheet                  |         |         |
| Wax                          |         |         |
| Steel                        |         |         |
| Plant based oil              | 0,00    |         |
| Aluminium sheet              |         |         |
| Brass                        |         |         |
| Cotton fabric                |         |         |
| Polyamid 6.6 (PA 6.6) fabric |         |         |
| Polyester (PET) fabric       |         |         |
| Polypropylene (PP)           |         |         |

Eutrophication Potential (EP) [kg Phosphate-Equiv.]

|                              | Chair 1 | Chair 2 |
|------------------------------|---------|---------|
| American Hardwood Lumber 1   | 0,00    |         |
| American Hardwood Lumber 2   | 0,00    |         |
| American Hardwood Lumber 3   | 0,00    |         |
| American Hardwood Lumber 4   | 0,00    |         |
| American Hardwood Lumber 5   | 0,00    |         |
| PP reinforced plastic        |         |         |
| Coating (solvent based)      |         |         |
| Coating (water based)        | 0,00    |         |
| Epoxy glue                   |         |         |
| Nuts and bolds               |         |         |
| Leather                      |         |         |
| Plywood                      |         |         |
| PE (HD)                      |         |         |
| PU                           |         |         |
| PVA glue                     | 0,00    |         |
| PU synthetic leather         |         |         |
| PVC synthetic leather        |         |         |
| Stainless steel sheet        |         |         |
| Steel sheet                  |         |         |
| Wax                          |         |         |
| Steel                        |         |         |
| Plant based oil              | 0,00    |         |
| Aluminium sheet              |         |         |
| Brass                        |         |         |
| Cotton fabric                |         |         |
| Polyamid 6.6 (PA 6.6) fabric |         |         |
| Polyester (PET) fabric       |         |         |
| Polypropylene (PP)           |         |         |

|                              | Chair 1 | Chair 2 |
|------------------------------|---------|---------|
| American Hardwood Lumber 1   | 3,31    |         |
| American Hardwood Lumber 2   | 5,38    |         |
| American Hardwood Lumber 3   | 0,88    |         |
| American Hardwood Lumber 4   | 0,87    |         |
| American Hardwood Lumber 5   | 2,70    |         |
| PP reinforced plastic        |         |         |
| Coating (solvent based)      |         |         |
| Coating (water based)        | 0,20    |         |
| Epoxy glue                   |         |         |
| Nuts and bolds               |         |         |
| Leather                      |         |         |
| Plywood                      |         |         |
| PE (HD)                      |         |         |
| PU                           |         |         |
| PVA glue                     | 0,57    |         |
| PU synthetic leather         |         |         |
| PVC synthetic leather        |         |         |
| Stainless steel sheet        |         |         |
| Steel sheet                  |         |         |
| Wax                          |         |         |
| Steel                        |         |         |
| Plant based oil              | 0,01    |         |
| Aluminium sheet              |         |         |
| Brass                        |         |         |
| Cotton fabric                |         |         |
| Polyamid 6.6 (PA 6.6) fabric |         |         |
| Polyester (PET) fabric       |         |         |
| Polypropylene (PP)           |         |         |

#### Carbon uptake (biogenic Carbon dioxide)

As stated above (3.4) the stored (biogenic) carbon is quantified seperately here for transparent carbon balance, and not being subtracted from the Global Warming impact of the product.

|                                       | Chair 1 | Chair 2 |
|---------------------------------------|---------|---------|
| Product Hardwood lumber <e-ep></e-ep> | -7,35   |         |
| Product Hardwood lumber <e-ep></e-ep> | -10,45  |         |
| Product Hardwood lumber <e-ep></e-ep> | -2,19   |         |
| Product Hardwood lumber <e-ep></e-ep> | -2,48   |         |
| Product Hardwood lumber <e-ep></e-ep> | -6,02   |         |

|                    | Chair 1 | Chair 2 |
|--------------------|---------|---------|
| Leather            |         |         |
| Plant based<br>oil | -0,05   |         |
| Cotton fabric      |         |         |

#### Ozone Layer Depletion Potential (ODP, steady state) [kg R11-Equiv.]

I

|                              | Chair 1 | Chair 2 |
|------------------------------|---------|---------|
| American Hardwood Lumber 1   | 0,00    |         |
| American Hardwood Lumber 2   | 0,00    |         |
| American Hardwood Lumber 3   | 0,00    |         |
| American Hardwood Lumber 4   | 0,00    |         |
| American Hardwood Lumber 5   | 0,00    |         |
| PP reinforced plastic        |         |         |
| Coating (solvent based)      |         |         |
| Coating (water based)        | 0,00    |         |
| Epoxy glue                   |         |         |
| Nuts and bolds               |         |         |
| Leather                      |         |         |
| Plywood                      |         |         |
| PE (HD)                      |         |         |
| PU                           |         |         |
| PVA glue                     | 0,00    |         |
| PU synthetic leather         |         |         |
| PVC synthetic leather        |         |         |
| Stainless steel sheet        |         |         |
| Steel sheet                  |         |         |
| Wax                          |         |         |
| Steel                        |         |         |
| Plant based oil              | 0,00    |         |
| Aluminium sheet              |         |         |
| Brass                        |         |         |
| Cotton fabric                |         |         |
| Polyamid 6.6 (PA 6.6) fabric |         |         |
| Polyester (PET) fabric       |         |         |
| Polypropylene (PP)           |         |         |

## Photochem. Ozone Creation Potential (POCP) [kg Ethene-Equiv.]

|                              | Chair 1 | Chair 2 |
|------------------------------|---------|---------|
| American Hardwood Lumber 1   | 0,01    |         |
| American Hardwood Lumber 2   | 0,01    |         |
| American Hardwood Lumber 3   | 0,00    |         |
| American Hardwood Lumber 4   | 0,00    |         |
| American Hardwood Lumber 5   | 0,01    |         |
| PP reinforced plastic        |         |         |
| Coating (solvent based)      |         |         |
| Coating (water based)        | 0,00    |         |
| Epoxy glue                   |         |         |
| Nuts and bolds               |         |         |
| Leather                      |         |         |
| Plywood                      |         |         |
| PE (HD)                      |         |         |
| PU                           |         |         |
| PVA glue                     | 0,00    |         |
| PU synthetic leather         |         |         |
| PVC synthetic leather        |         |         |
| Stainless steel sheet        |         |         |
| Steel sheet                  |         |         |
| Wax                          |         |         |
| Steel                        |         |         |
| Plant based oil              | 0,00    |         |
| Aluminium sheet              |         |         |
| Brass                        |         |         |
| Cotton fabric                |         |         |
| Polyamid 6.6 (PA 6.6) fabric |         |         |
| Polyester (PET) fabric       |         |         |
| Polypropylene (PP)           |         |         |

|                              | Chair 1 | Chair 2 |
|------------------------------|---------|---------|
| American Hardwood Lumber 1   | 47,03   |         |
| American Hardwood Lumber 2   | 76,88   |         |
| American Hardwood Lumber 3   | 12,36   |         |
| American Hardwood Lumber 4   | 12,08   |         |
| American Hardwood Lumber 5   | 37,94   |         |
| PP reinforced plastic        |         |         |
| Coating (solvent based)      |         |         |
| Coating (water based)        | 4,04    |         |
| Epoxy glue                   |         |         |
| Nuts and bolds               |         |         |
| Leather                      |         |         |
| Plywood                      |         |         |
| PE (HD)                      |         |         |
| PU                           |         |         |
| PVA glue                     | 12,12   |         |
| PU synthetic leather         |         |         |
| PVC synthetic leather        |         |         |
| Stainless steel sheet        |         |         |
| Steel sheet                  |         |         |
| Wax                          |         |         |
| Steel                        |         |         |
| Plant based oil              | 0,05    |         |
| Aluminium sheet              |         |         |
| Brass                        |         |         |
| Cotton fabric                |         |         |
| Polyamid 6.6 (PA 6.6) fabric |         |         |
| Polyester (PET) fabric       |         |         |
| Polypropylene (PP)           |         |         |

|                              | Chair 1 | Chair 2 |
|------------------------------|---------|---------|
| American Hardwood Lumber 1   | 201,48  |         |
| American Hardwood Lumber 2   | 270,17  |         |
| American Hardwood Lumber 3   | 49,97   |         |
| American Hardwood Lumber 4   | 48,99   |         |
| American Hardwood Lumber 5   | 165,52  |         |
| PP reinforced plastic        |         |         |
| Coating (solvent based)      |         |         |
| Coating (water based)        | 4,21    |         |
| Epoxy glue                   |         |         |
| Nuts and bolds               |         |         |
| Leather                      |         |         |
| Plywood                      |         |         |
| PE (HD)                      |         |         |
| PU                           |         |         |
| PVA glue                     | 12,24   |         |
| PU synthetic leather         |         |         |
| PVC synthetic leather        |         |         |
| Stainless steel sheet        |         |         |
| Steel sheet                  |         |         |
| Wax                          |         |         |
| Steel                        |         |         |
| Plant based oil              | 0,57    |         |
| Aluminium sheet              |         |         |
| Brass                        |         |         |
| Cotton fabric                |         |         |
| Polyamid 6.6 (PA 6.6) fabric |         |         |
| Polyester (PET) fabric       |         |         |
| Polypropylene (PP)           |         |         |

# **5 Parameters**

The following table illustrates the parameters for the chair designed by Lauren Davis

| Szenario-Parameter |         |         |                                                 |
|--------------------|---------|---------|-------------------------------------------------|
|                    | Chair 1 | Chair 2 |                                                 |
| Materials          |         | •       |                                                 |
| Wood               |         |         |                                                 |
| Hardwood lumber 1  |         |         |                                                 |
| Mass               | 4,33    | 0       | [kg; material use, total input]<br>Wood use     |
| Species            | Walnut  | Ash     | specify hardwood species                        |
| Thickness          | 2       | 1       | [inch] please choose the value between 0-5 inch |
| loss               | 2,27    | 0       | [kg; material loss] Wood waste                  |
| Hardwood lumber 2  | ÷       | ·       |                                                 |

| Mass                   | 6,16      | 0          | [kg; material use, total input]<br>Wood use              |
|------------------------|-----------|------------|----------------------------------------------------------|
| Species                | RedOak    | Basswood   |                                                          |
| Thickness              | 2         | 1          | [inch] please choose the value between 0-5 inch          |
| loss                   | 3,22      | 0          | [kg; material loss] Wood waste                           |
| Hardwood lumber 3      |           |            |                                                          |
| Mass                   | 1,29      | 0          | [kg; material use, total input]<br>Wood use              |
| Species                | Ash       | Birch      |                                                          |
| Thickness              | 2         | 1          | [inch] please choose the value between 0-5 inch          |
| loss                   | 0,68      | 0          | [kg; material loss] Wood waste                           |
| Hardwood lumber 4      |           |            |                                                          |
| Mass                   | 1,46      | 0          | [kg; material use, total input]<br>Wood use              |
| Species                | SoftMaple | Cottonwood |                                                          |
| Thickness              | 2         | 1          | [inch] please choose the value between 0-5 inch          |
| loss                   | 0,76      | 0          | [kg; material loss] Wood waste                           |
| Hardwood lumber 5      |           |            |                                                          |
| Mass                   | 3,55      | 0          | [kg; material use, total input]<br>Wood use              |
| Species                | Cherry    | HardMaple  |                                                          |
| Thickness              | 2         | 1          | [inch] please choose the value between 0-5 inch          |
| loss                   | 1,86      | 0          | [kg; material loss] Wood waste                           |
| Plywood                | 0         | 0          | [kg; material use, total input]<br>Plywood use           |
| Plywood loss           | 0         | 0          | [kg; material loss] Plywood waste                        |
| Recycled Hardwood      | 0         | 0          | [kg; material use, total input]<br>Recycled hardwood use |
| Recycled Hardwood loss | 0         | 0          | [kg; material loss] Recycled<br>hardwood waste           |
| Metals                 |           |            |                                                          |
| Steel sheet            | 0         | 0          | [kg; material use, total input]<br>Steel use (sheet)     |
| Steel sheet losses     | 0         | 0          | [kg; material loss] Steel waste (sheet)                  |
| Steel                  | 0         | 0          | [kg; material use, total input]<br>Steel use (wire)      |
| Steel wire losses      | 0         | 0          | [kg; material loss] Steel waste<br>(wire)                |
| Stainless steel        | 0         | 0          | [kg; material use, total input]<br>Steel use (stainless) |

| Stainless steel losses       | 0       | 0 | [kg; material loss] Steel waste (stainless)                                       |  |  |  |
|------------------------------|---------|---|-----------------------------------------------------------------------------------|--|--|--|
| Aluminum                     | 0       | 0 | [kg; material use, total input]<br>Aluminum use                                   |  |  |  |
| Aluminum losses              | 0       | 0 | [kg; material loss] Aluminum waste                                                |  |  |  |
| Brass                        | 0       | 0 | [kg; material use, total input]<br>Brass use                                      |  |  |  |
| Brass losses                 | 0       | 0 | [kg; material loss] Brass waste                                                   |  |  |  |
| Plastic                      | Plastic |   |                                                                                   |  |  |  |
| Polyethylene                 | 0       | 0 | [kg; material use, total input]<br>Use of plastic (Polyethylene,<br>high density) |  |  |  |
| Polyethylene losses          | 0       | 0 | [kg; material loss] waste of<br>plastic (Polyethylene, high<br>density)           |  |  |  |
| Polyurethan foam/pad         | 0       | 0 | [kg; material use, total input]<br>Use of foam/pad (Polyurethane)                 |  |  |  |
| Polyurethan foam/pad losses  | 0       | 0 | [kg; material loss] waste of<br>foam/pad (Polyurethane)                           |  |  |  |
| Polypropylen                 | 0       | 0 | [kg; material use, total input]<br>Use of plastic (Polypropylen)                  |  |  |  |
| Polypropylen losses          | 0       | 0 | [kg; material loss] waste of plastic (Polypropylen)                               |  |  |  |
| Reinforced Polymer           | 0       | 0 | [kg; material use, total input]<br>Use of plastic (reinforced<br>polymer)         |  |  |  |
| Reinforced Polymer losses    | 0       | 0 | [kg; material loss] waste of plastic (reinforced polymer)                         |  |  |  |
| Bio Resin                    | 0       | 0 | [kg; material use, total input]<br>Bio Resin                                      |  |  |  |
| Bio Resin loss               | 0       | 0 | [kg; material loss] Bio Resin                                                     |  |  |  |
| Textiles                     |         |   |                                                                                   |  |  |  |
| Cotton fibre                 | 0       | 0 | [kg; material loss] Fabric<br>(Cotton)                                            |  |  |  |
| Cotton fibre losses          | 0       | 0 | [kg; material use, total input]<br>Fabric (Cotton)                                |  |  |  |
| Leather                      | 0       | 0 | [kg; material use, total input]<br>Leather                                        |  |  |  |
| Leather losses               | 0       | 0 | [kg; material loss] leather waste                                                 |  |  |  |
| PUR synthetic leather        | 0       | 0 | [kg; material use, total input]<br>PUR synthetic leather                          |  |  |  |
| PUR synthetic leather losses | 0       | 0 | [kg; material loss] PUR<br>synthetic leather waste                                |  |  |  |
| PVC sythetic leather         | 0       | 0 | [kg; material use, total input]<br>Fabric (synthetic leather)                     |  |  |  |
| PVC sythetic leather losses  | 0       | 0 | [kg; material loss] Fabric<br>(synthetic leather)                                 |  |  |  |

| Polyamid fabric                         | 0     | 0 | [kg; material use, total input]<br>Fabric (Polyamid)  |  |
|-----------------------------------------|-------|---|-------------------------------------------------------|--|
| Polyamid fabric losses                  | 0     | 0 | [kg; material loss] Fabric<br>(Polyamid)              |  |
| Polyester fabric                        | 0     | 0 | [kg; material use, total input]<br>Fabric (Polyester) |  |
| Polyester fabric losses                 | 0     | 0 | [kg; material loss] Fabric<br>(Polyester)             |  |
| Machinery                               |       |   |                                                       |  |
| Machinery Use                           |       |   |                                                       |  |
| Cross cut saw                           | 60    | 0 | [min] Time cross cut saw is used                      |  |
| Straight line edger                     | 0     | 0 | [min] Time straight line edger is used                |  |
| Four side planer                        | 0     | 0 | [min] Time four side planer is used                   |  |
| CNC                                     | 0     | 0 | [min] Time CNC is used                                |  |
| Morticer                                | 0     | 0 | [min] Time morticer is used                           |  |
| Through feed sander                     | 0     | 0 | [min] Time through feed speed sander is used          |  |
| Press                                   | 0     | 0 | [min] Time press is used                              |  |
| Linisher                                | 0     | 0 | [min] Time through linisher is used                   |  |
| Machinery Capacity                      |       |   |                                                       |  |
| Cross cut saw                           | 26,43 | 0 | [kW] Energy requirement cross cut saw                 |  |
| Straight line edger                     | 0     | 0 | [kW] Energy requirement<br>straight line edger        |  |
| Four side planer                        | 0     | 0 | [kW] Energy requirement four sided planer             |  |
| CNC                                     | 0     | 0 | [kW] Energy requirement CNC                           |  |
| Morticer                                | 0     | 0 | [kW] Energy requirement<br>morticer                   |  |
| Through feed sander                     | 0     | 0 | [kW] Energy requirement<br>through feed speed sander  |  |
| Press                                   | 0     | 0 | [kW] Energy requirement press                         |  |
| Linisher                                | 0     | 0 | [kW] Energy requirement linisher                      |  |
| Assembly/Finishing                      |       |   |                                                       |  |
| Fixing Materials (nails, screws, bolts) | 0     | 0 | [kg] use of fixing materials (Screws, mails, bolts)   |  |
| Glue (Epoxy resin)                      | 0     | 0 | [kg] use of Epoxy resin glue                          |  |
| PVA Glue                                | 0,06  | 0 | [kg] use of PVA glue                                  |  |
| Paint/Laquer (water based)              | 0,06  | 0 | [kg] use of water-based<br>paint/laquer               |  |
| Paint/Laquer (solvent based)            | 0     | 0 | [kg] use of solvent-based paint/laquer                |  |
| Plant based oil                         | 0,01  | 0 | [kg] use of plant based oil                           |  |

| Wax                           | 0   | 0 | [kg] use of Wax                                                                                                     |
|-------------------------------|-----|---|---------------------------------------------------------------------------------------------------------------------|
| Packaging                     |     |   |                                                                                                                     |
| Packaging foil                | 0   | 0 | [kg; material use, total input]<br>PP foil use for packaging                                                        |
| Cardboard                     | 0   | 0 | [kg; material use, total input]<br>Cardboard for packaging                                                          |
| Use Phase                     |     |   |                                                                                                                     |
| Shipping to customer by rail  | 0   | 0 | [km] distance start - end, default<br>= 100 km                                                                      |
| Shipping to customer by ship  | 0   | 0 | [km] Distance seaborne<br>transport (default=100km)                                                                 |
| Shipping to customer by truck | 100 | 0 | [km] distance start - end, default<br>= 100 km                                                                      |
| Life span                     |     |   |                                                                                                                     |
| Durableness                   | 1   | 0 | [years] lifetime of chair (1=<br>impact over complete lifespan;<br>if >1 impact assessment per<br>year of lifetime) |